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Abstract:In this paper we consider three parameter generalized exponential distribution. Exact expressions and some 

recurrence relations for single and product moments of lower generalized order statistics are derived. Further the results are 

deduced for moments of order statistics and lower records and characterization of this distribution has been considered on 

using the conditional moment of the lower generalized order statistics. 
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1 Introduction 

Kamps [7] introduced the concept of generalized order statistics )(gos . It is known that ordinary order 

statistics, sequential order statistics, Stigler’s order statistics and upper record values are special cases of 

gos . In this article we will consider the lower generalized order statistics )( gosl  defined as follows: 

Let Nn , 1k , m , be the parameters such that 

  
0)1()(  mrnkr    for all  nr 1 . 

Then ),,,(,),,,,1( kmnnXkmnX    are called gosl  from an absolutely continuous distribution function 

)(df )(xF  with the probability distribution function )( pdf )(xf  if their joint pdf  has the form 
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and the joint pdf  of ),,,( kmnrX   and ),,,( kmnsX  , nsr 1 , is 
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where 
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 )1()()( mmm hxhxg  , )1,0[x . 

We shall also take 0),,,0(  kmnX . If 0m , 1k , then ),,,( kmnrX   reduces to the  )1( rn th 

order statistic, nrnX :1  from the sample nXXX ,,, 21   and when 1m , then ),,,( kmnrX   reduces to 

the r th lower k  record value (Pawlas and Szynal [11]). The work of Burkschat et al. [3] may also refer 

for gosl . 

 Recurrence relations for single and product moments of gosl  from the inverse Weibull 

distribution are derived by Pawlas and Syznal [11]. Ahsanullah [1] and Mbah and Ahsanullah [10] 

characterized the uniform and power function distributions based on distributed properties of gosl  

respectively. Khan et al.[8] and Khan and Kumar [9] have established and recurrence relations for moment 

of gosl  for exponentiated Weibull and Pareto distributions. 

 In the present study, we have established explicit expressions and some recurrence relations for 

single and product moments of gosl from generalized exponential distribution. Results for order statistics 

and lower record values are deduced as special cases and characterization of this distribution has been 

considered on using the conditional moment of the lower generalized order statistics. 

 A random variable X  is said to have generalized exponential distribution (Gupta and Kundu [4]) 

if its pdf  is of the form 

  




 /)(1/)( ]1[)(  xx eexf ,     x ,  , 0    (1.4) 

and the corresponding df  is 

   ]1[)( /)(  xexF ,     x ,  , 0 .     (1.5) 

Here   is a shape parameter,   is a scale parameter and   is a location parameter. Gupta and Kundu [4, 

5, 6] pointed out that the above given generalized exponential distribution will be useful as a good 

alternative to the gamma or the Weibull model in analyzing many lifetime data. Gupta and Kundu [6]  
have mentioned some drawbacks for the gamma and Weibull distributions. 

 

2 Single Moments 
 

 Note that for generalized exponential distribution defined in (1.5) 

  )(]1[)( /)( xfexF x   




.       (2.1) 

 The relation in (2.1) will be exploited in this paper to derive recurrence relations for the moments 

of lower generalized order statistics from the generalized exponential distribution. 

We shall first establish the following Lemma which may be helpful in proving the main result. 

Lemma 2.1For the distribution as given in (1.5) and any non-negative finite integers a  andb , 
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where 
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 Making the substitution 
/1)]([ xFt   in (2.5), we find that 
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where 
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 Differentiating numerator and denominator of (2.8) b  times with respect to m , we get 
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 On applying L’ Hospital rule, we have 
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 But for all integers 0n  and for all real numbers x , we have Ruiz [12] 
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 Now on substituting (2.11) in (2.9) and simplifying the resulting expression, we have the result 
given in (2.3). 

Theorem 2.1Forgeneralized exponential distribution as given in (1.4) and nr 1 , ,2,1k , 1m , 
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where )1,1(  rI rj   is as defined in (2.4). 

Proof From (1.2), we have 
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 Making use of (2.2) in (2.12), we establish the result given in (2.13). 

Identity 2.1For 1r , 1k , nr 1  and ,1m  
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 Note that, if 0w , then the summation 
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and hence the result given in (2.14). 

Special cases 

i) Putting 0m , 1k  in (2.13), the exact expression for the single moments of order statistics of the 

generalized exponential distribution can be obtained as 
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ii) Putting  1m  in (2.13), we deduce the exact expression for the single moment of lower k  record 

values for the generalized exponential distribution in view of (2.12) and (2.3) in the form 
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A recurrence relation for single moment of  gosl  from df  (1.5) is obtained in the following theorem. 

Theorem 2.2For the distribution as given in (1.5) and for nr 2 , 2n  and ,2,1k , 
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where 

  
 /)(1)(  xj exx . 

Proof Khan et al. [8] have shown that for  nr 1 , 2n  and ,2,1k , 

  )],,,1([)],,,([ kmnrXEkmnrXE jj  
 

    dxxFgxFx
r

Cj r
m

j

r

r r ))(()]([
)!1(

111 






.                                        (2.16) 

 Upon substituting for )(xF  from (2.1) in (2.16) and simplifying the resulting expression, we 

derive the relation given in theorem 2.2. 
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Remark 2.1Putting 0m , 1k in (2.15), we obtain a recurrence relation for single moment of order 

statistics of the generalized exponential distribution in the form 
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Remark 2.2 Setting 1m  and 1k  in theorem 2.2, we get a recurrence relation for single moment 

of lower k  record values from generalized exponential distribution in the form 
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3 Product moments 

 

Before coming to the main results we shall prove the following Lemmas. 

Lemma 3.1For generalized exponential distribution as given in (1.4) and non-negative integers a , b , c  

with 1m , 
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 On substituting the above expression of )(xI  in (3.3), we find that 
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 Again by setting 
/1)]([ xFt   in (3.5) and simplifying the resulting expression, we establish the 

result given in (3.1). 
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Lemma 3.2For the distribution as given in (1.5) and any non-negative integers a , b and c , 
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 Making use of Lemma 3.1 in (3.6), we establish the result given in (3.7). 
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 On applying L’ Hospital rule and then using (2.11), (3.8) can be proved on the lines of (2.3). 

Theorem 3.1Forgeneralizedexponential distribution as given in (1.5) and for nsr 1 , ,2,1k , 
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Proof From (1.3), we have  
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the result given in (3.9). 

 Making use of (3.7) in (3.9), we establish the relation given in (3.10). 
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 Now on using (2.14), we get the result given in (3.12). 

 At 0r , (3.12) reduces to (2.14). 

Special cases 

i) Putting 0m , 1k  in (3.10), the exact expression for the product moments of order statistics of the 

generalized exponential distribution is obtained as 
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ii) Putting 1m  in (3.10), we deduce the explicit expression for the product moments of lower k  

record values for generalized exponential distribution in view of (3.9) and (3.8) in the form 
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 Making use of (2.1), we can derive recurrence relations for product moments of gosl  from (1.5). 

Theorem 3.2For the distribution as given in (1.5) and for nsr 1 , 2n  and ,2,1k , 
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Remark 3.2Setting 1m  and 1k , in (3.13), we obtain the recurrence relations for product moments of 

lower k  record values from generalized exponential distribution in the form 
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where 

  1)0( pa , 0p   and  0)0( pa , 0p . 

 Therefore, 
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.                            (3.15) 

 Making use of (3.12) in (3.15) and simplifying the resulting expression, we get 
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as obtained in (2.13). 

Remark 3.4At 0i , Theorem 3.2 reduces to Theorem 2.2. 

 

4  Characterization 

 

 Let ),,,( kmnrX 
, nr ,,2,1   be gosl  from a continuous population with df )(xF  and  pdf

)(xf , then the conditional pdf  of ),,,( kmnsX 
 given xkmnrX  ),,,( , nsr 1 , in view of (1.3) 

and (1.2), is 
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Theorem 4.1Let X  be a non negative random variable having an absolutely continuous distribution 

function )(xF  with 0)0( F  and 1)(0  xF  for all 0x , then 
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if and only if 

  
 ]1[)( /)(  xexF , x , , 0 . 

Proof:    From (4.1), we have 
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 By setting  
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where 
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 Again by setting  1 mut  in (4.5) and (4.6), we get 
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 Substituting these expressions for 1A  and 2A  in equation (4.4) and simplifying the resulting 

expression, we derive the relation given in (4.2). 

To prove sufficient part, we have from (4.1) and (4.2) 
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where 

  

























 



 






 rs

j jr

jr

p

px

r
pp

e
xH

11

/)(

/

)1(
)( . 

 Differentiating (4.7) both sides with respect to x , we get 
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which proves that 
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